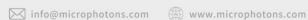


光纤耦合激光二极管

(1100nm 功率 200mW)|工业加工

产品描述


光纤耦合激光器是一种将激光束通过光纤传输的激光设备,广泛应用于通讯、医疗、工业加 工等领域。其核心优势在于能够高效地将激光光束耦合进入光纤,从而实现精准的能量传输 和高效的能量输出。筱晓光子的光纤耦合二极管不仅具有紧凑的结构、易于集成和高度稳定 的特点,还能在长距离传输中减少光损失,保证光束质量,满足高要求的应用场景。

产品特点

高效光纤耦合;波长多样可选;低噪声输出;紧凑模块化;快速调制

应用领域

光纤传感 | 医疗设备 | 工业加工 | 光通信 | 科研实验

核心参数

平均波长	峰值输出功率 (脉冲)	输出功率
1100nm	600mW	200mW

尺寸图

详细参数

推荐操作条件

外壳安装在室温散热器上

参数	Min.值	典型值	Max.值	单位
芯片温度	20	25	30	°C
正向电流@CW 模式		1200	1400	mA
峰值正向电流@脉冲模式	30		600	mA
输出峰值功率@脉冲模式		500	600	mW
输出功率@CW 模式	10		200	mW

脉冲特性(500ns 脉冲宽度,1% 占空比)

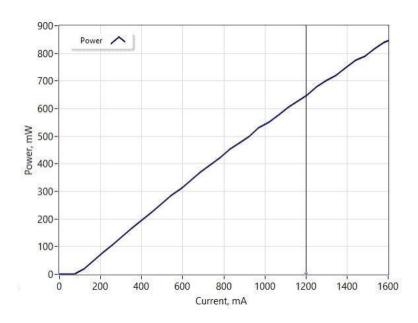
25°C, 2000mA

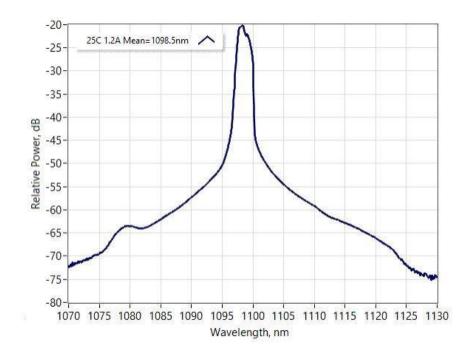
参数	Min.值	典型值	Max.值	单位
峰值正向电流@1000mW			1400	mA
平均波长	1095	1100	1105	nm
带宽(FWHM),分辨率 200pm	0.8	1.6	6	nm

CW 特性

@ 25°C*,500mA

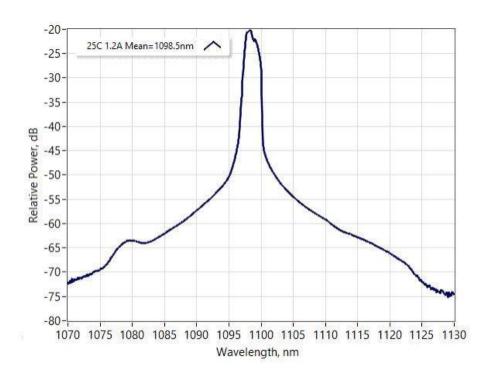
参数	Min.值	典型值	Max.值	单位
正向电流@400mW			600	mA
正向电压		1.5	2.2	V
阈值电流		70	150	mA
平均波长	1094	1100	1106	nm
带宽(FWHM),分辨率 200pm		0.5	5	nm
波长温度可调性		0.35		nm/°C
偏振消光比 (PER)	15	18		dB
偏振		TE		



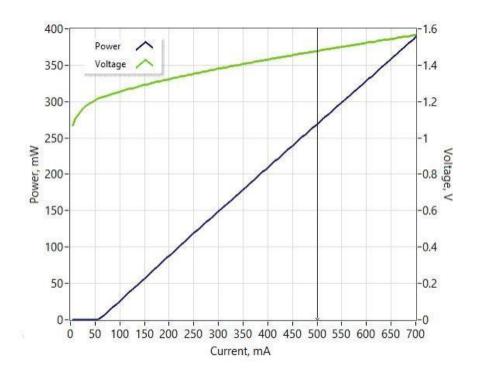

典型性能

测试条件: 500ns 脉冲宽度, 1%占空比

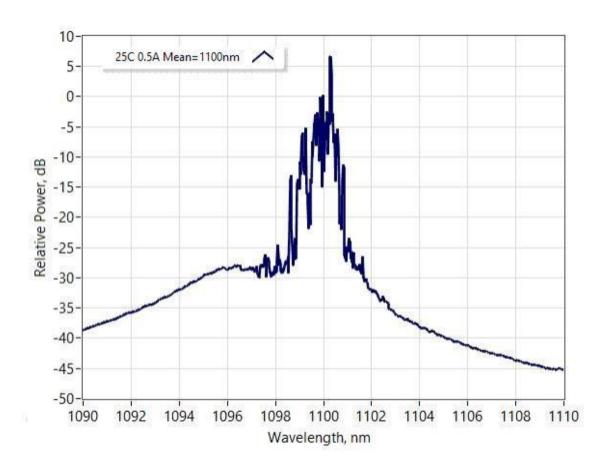
光电流电压特性



光谱(分辨率 200pm)



脉冲形状@2000mA

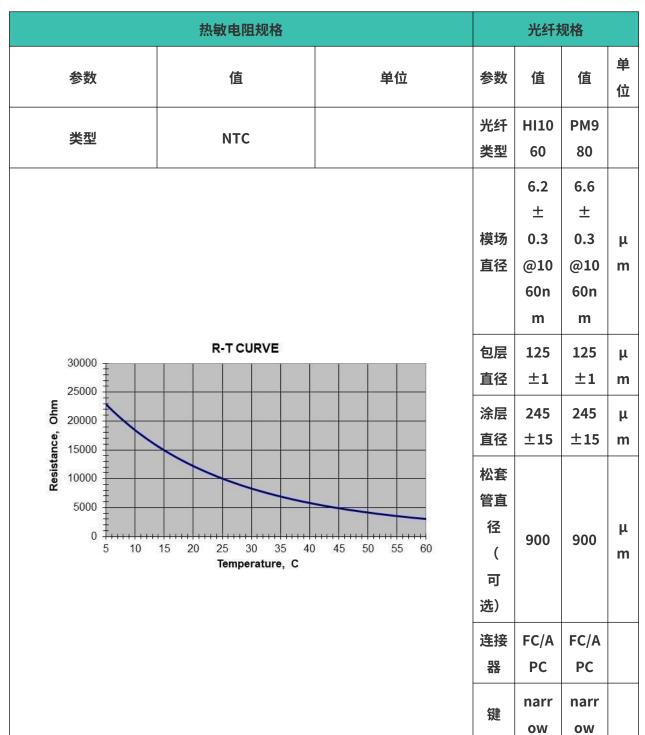

典型 CW 性能(仅供参考)

光电流电压特性

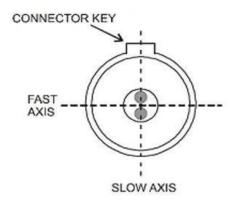
光谱(res. 200pm)

jue 对 Max. 额定参数

参数	Min.值	Max.值	单位
脉冲模式下的输出峰值功率(<1ns 脉冲宽度,<10% 占空比)		900	mW
脉冲模式下的峰值正向电流(<1ns 脉冲宽度,<10% 占空比)		1600	mA
CW 模式下的输出功率		350	mW
CW 模式下的正向电流		700	mA
反向电压		2	V



参数	Min.值	Max.值	单位
TEC 电流		3	Α
TEC 电压		4	V
芯片工作温度	5	40	°C
外壳工作温度	0	70	°C
存储温度	-40	85	°C
引脚焊接温度(最长 10 秒,z 高外壳温度 120°C)		300	°C
光纤带半径	3		cm


通用参数

热敏电阻规格			光纤规格			
参数	值	单位	参数	值	值	单位
类型	NTC		光纤 类型	HI10 60	PM9 80	
电阻@25°C	10±0.1	kOhm	数值 孔径 (典 型 值)	0.14	0.12	
Beta 25-85°C	3435±1%	К	截止波长	920 ±50	900 ±70	n m

The output light is polarized along the slow axis of PM fiber.

安全和操作说明

此设备发出的光是不可见的,对人眼有害。设备运行时,请避免直视光纤连接器。在连接器 打开的情况下操作时,必须佩戴适当的激光安全眼镜。

jue 对 Max. 额定值仅可短时间应用于设备。长时间暴露于 Max. 额定值或暴露于多个 Max. 额定值可能会导致设备损坏或影响设备的可靠性。在设备的 Max. 额定值之外操作设备可能 会导致设备故障或安全隐患。必须使用与组件一起使用的电源,以使 Max. 正向电流不超过。 热辐射器上的设备需要适当的散热器。必须使用 4 个螺钉(以 X 型螺栓拧紧,初始扭矩设 置为 0.075Nm,最终以 X 型螺栓拧紧,扭矩设置为 0.15Nm)或夹具将设备安装在散热器 上。散热器表面的平整度偏差必须小于 0.05mm。建议在外壳底部和散热器之间使用铟箔或 导热柔软材料作为热界面。不宜为此使用导热油脂。

避免设备背反射。它可能会影响设备在光谱和功率稳定性方面的性能。

还可能导致致命的面损坏。强烈建议使用光隔离器来阻挡背反射。

不要拉动光纤。不要弯曲半径小于 3 厘米的光纤。在安装过程中,应始终保护光纤顶部免受

任何污染或损坏。取下光纤顶部的防尘盖后,使用沾有异丙醇或乙醇的光学镜头清洁纸或棉 签沿一个方向擦拭,小心清洁光纤顶部。仅使用干净的光纤连接器操作设备。

ESD 保护 - 静电放电是产品意外故障的主要原因。采取极端预防措施以防止 ESD。在设备 安装过程中,必须保持 ESD 保护 - 在处理产品时使用腕带、接地的工作表面和严格的防静 电技术。

