

衍射分束器(193nm-10.6um 一维/二维)

产品描述

光束分束器是衍射光学元件(DOE),用于将单个激光束分成几个光束,每个光束均具有原始 光束的特征。

产品特点

单模/多模激光器适用; 高能量阈值; 玻璃或塑料材料; 精确的分离角度; XYZ 轴不敏感; 可 定制分离角和形状;任意输入形状;波长从红外到紫外;可选择增透膜

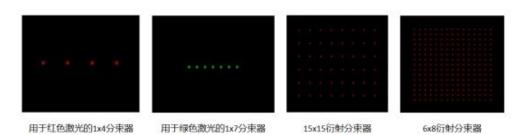
应用领域

平行材料加工 | 医疗美容 | 激光刻线(太阳能电池) | 玻璃刻线(LCD显示屏) | 激光显 示&照明 | 机器视觉&3D 传感器 | 光纤光学

核心参数

无
无

详细参数


根据元件上的衍射图样,衍射光束分离器可以生成一维光束阵列(1xN)或二维光束矩阵 (MxN)。衍射分束器与单色光(例如激光束)一起使用,可根据用于特定波长和特定的输 出光束分离角度来设计。

正入射照明下的光栅方程:

$$\Lambda = \frac{m\lambda}{\sin\alpha}$$

其中 Λ 表示衍射光学元件的周期,m 代表衍射级次, Λ 为工作波长, α 指第 m 级衍射光束与光 轴之间的夹角。

与所有衍射光学元件相同,衍射分束器需针对特定波长进行制造。当使用其他波长时,器件 效率会降低且衍射角度将发生变化。允许与设计波长存在 1-2%的微小偏差。多点分束器最主 要的应用是通过分割光束数量倍率提升激光系统处理效率。例如将入射光束分割为两束可使 加工效率提升一倍。

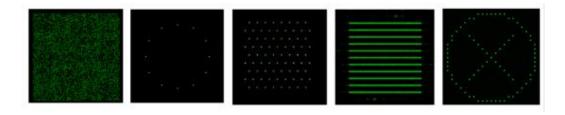


图: 多点衍射光学元件应用示例

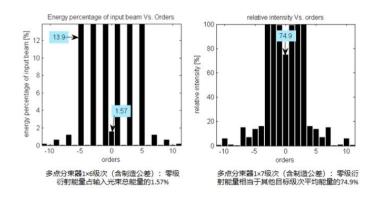
典型公差表

XY 轴向偏移	不敏感	
倾斜角度	不敏感<±10°,超出该范围会导致零级衍射效	
透镜 Z 向距离	不敏感	
Z 轴旋转	衍射阶数使图像旋转相同角度	

分束器零级衍射(ZO)

零级衍射(ZO)与制造公差相关,这些公差会导致少量入射光不受衍射图案影响。此类公差 效应表现为轴向上(即中心光斑处)能量增强。

在奇数衍射级次的 MS 设计中,零级衍射是预期输出光束之一,这与偶数级次的设计截然不同。



通常对于工艺敏感的应用场景(即使输入能量的微小百分比都可能影响工艺质量),以及效 率至关重要的应用领域,我们推荐采用奇数点设计而非偶数设计。

在我们标准多点分束器产品列表中,对于偶数级次设计的器件,零级能量以输入光束能量的 百分比形式呈现;而对于奇数级次设计的器件,该值则表示为其他目标级次平均能量的百分 比(假设传输效率为 100%)。

示例:

请注意:对于具有极多光斑数量的元件(约>400个光斑),零级衍射能量将显示为输入光 束功率的百分比,而非相对于其他级次的相对值。

设计考量与局限性

二元与多阶衍射元件的性能对比

我们提供的衍射分束器主要分为两类:二元型和多阶型。二元衍射图案仅包含两个阶深,是 衍射光学元件中的"主力军",具有成本效益高、制造重复性好等优势,适用于大多数应用场 景。其缺点在于约 80%的衍射效率。针对需要更高效率的应用(如高功率工业激光应用), HOLO/OR 提供多阶衍射元件。这类元件采用更复杂的制造工艺,成本较高,但可实现>95% 的衍射效率。

参数指标	二元型	多阶型
成本	标准	更高
设计灵活性	仅中心对称点阵模式	任意图案
衍射效率	衍射效率 有限(80%) 特定设计可达 96%	
Max. 衍射角	1064nm 波长可达 40°	制造限制约 10°(1064nm)
典型零级衍射	典型零级衍射 输入能量的 0.3%-0.6% 输入能量的	
能量均匀性	优异	良好

推荐 Min. 光斑尺寸规范

推荐 Min. 输入光斑尺寸定义为: 奇数光斑数时需不小于衍射元件周期的 3 倍, 偶数光斑数时 需不小于周期的 1.5 倍。该条件源于确保相邻级次间获得清晰分离的需求。Min. 光斑尺寸的 通用判定准则为: 在角度配置中,光斑分离角需大于光束自然发散角的 3 倍; 在聚焦配置中, 光斑间距需大于衍射极限的 3 倍。若低于该阈值,使用相干激光时 (M²<2) 将出现级次干涉, 部分相干激光则会产生光斑重叠现象。

参数范围

材料	熔融石英,蓝宝石,ZnSe,锗,塑料	
波长范围	193nm 至 10.6um	
设计	2 级到 16 级	
全角	0.001°到 80°(大角度需要附加光学元件)	
衍射效率	64% - 98%	
元件大小	几毫米至 150 毫米	
涂层(可选)	AR/AR Coating	
定制设计	几乎任意系统和形状	

MS 类型的部件号 (PN) 代码

MS-000-C-D-E:

MS	000	С	D	E
DS:一维 MS:二维	设计编号	波长代码	镀膜类型	零级衍射范围代码

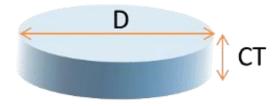
零级衍射范围代码对照表:

	A	N	L	х	S
范围	0-100%	50-100%	0-50%	其他	选择

DS-006-I-Y-A

输入参数	数值
波长 [nm]	1064
光束模式 (SM/MM)	SM 或 MM
Min. 光束直径 [mm]	>0.14

元件参数	数值	
元件类型	窗片	
材料	熔融石英	
元件尺寸 [mm]	25.4	
通光孔径 [mm]	22.9	
厚度 [mm]	3	
镀膜	AR/AR coating	



输出参数	数值
光斑数量	2
分离角 [deg]	2.54
$\theta_{\rm f}$ [deg]	2.54
透射效率	接近 100%
总效率	~79%
均匀性(对比度) [%]	<1%
相对于入射光束的零级 [%]	<2

MS-049-I-Y-A

输入参数	数值
波长 [nm]	1064
光束模式 (SM/MM)	SM 或 MM
Min. 光束直径 [mm]	>0.26

输出参数	数值
光斑数量	7×7
分离角 [deg]	0.70×0.70
$\theta_{\rm f}[{\sf deg}]$	4.21×4.21
透射效率	接近 100%
总效率	~76%
均匀性(对比度) [%]	<12%
相对于平均值的零级 [%]	0-100%